Приемники-сверхрегенераторы

Теория и практика

 

Процессы нарастания и спада колебаний

Но вернемся к сверхрегенератору. Пусть напряжение питания на описанное устройство подается в виде импульса в момент времени t0, как показано на рис. 2 сверху. Даже, если усиление транзистора и обратная связь достаточны для генерации, колебания в контуре возникнут не сразу, а будут нарастать по экспоненциальному закону некоторое время ?н. По такому же закону происходит и спад колебаний после выключения питания, время спада обозначено как ?с.

В общем виде закон нарастания и спада колебаний выражается формулой Uконт = U0exp(-rt/2L), где U0 - напряжение в контуре, с которого начался процесс; r - эквивалентное сопротивление потерь в контуре; L - его индуктивность; t - текущее время. Все просто в случае спада колебаний, когда r = rп (сопротивление потерь самого контура, рис. 3). Иначе обстоит дело при нарастании колебаний: транзистор вносит в контур отрицательное

сопротивление - rос (обратная связь компенсирует потери), и общее эквивалентное сопротивление становится отрицательным. Знак минус в показателе экспоненты исчезает, и закон нарастания запишется: Uконт = Uсexp(rt/2L), где r = rос - rп

Из приведенной формулы можно найти и время нарастания колебаний, учитывая, что рост начинается с амплитуды сигнала в контуре Uc и продолжается только до амплитуды U0, далее транзистор входит в режим ограничения, его усиление уменьшается и амплитуда колебаний стабилизируется: ?н = (2L/r)ln(U0/Uc). Как видим, время нарастания пропорционально логарифму величины, обратной уровню принимаемого сигнала в контуре. Чем больше сигнал, тем меньше время нарастания.

Если импульсы питания подавать на сверхрегенератор периодически, с частотой суперизации (гашения) 20...50 кГц, то в контуре будут происходить вспышки колебаний (рис. 4), длительность которых зависит от амплитуды сигнала - чем меньше время нарастания, тем больше длительность вспышки. Если вспышки продетектировать, на выходе получится демодулированный сигнал, пропорциональный среднему значению огибающей вспышек.

Усиление самого транзистора может быть небольшим (единицы, десятки), достаточным лишь для самовозбуждения колебаний, в то время как усиление всего сверхрегенератора, равное отношению амплитуды демодулированного выходного сигнала к амплитуде входного, весьма велико.

Описанный режим работы сверхрегенератора называют нелинейным, или логарифмическим, поскольку выходной сигнал пропорционален логарифму входного. Это вносит некоторые нелинейные искажения, но играет и полезную роль - чувствительность сверхрегенератора к слабым сигналам больше, а к сильным меньше - здесь действует как бы естественная АРУ.

Для полноты описания надо сказать, что возможен и линейный режим работы сверхрегенератора, если длительность импульса питания (см. рис. 2) будет меньше времени нарастания колебаний. Последние не успеют нарасти до максимальной амплитуды, а транзистор - не будет входить в режим ограничения. Тогда амплитуда вспышки станет прямо пропорциональна амплитуде сигнала. Такой режим, однако, нестабилен - малейшее изменение усиления транзистора или эквивалентного сопротивления контура r приведет к тому, что либо резко упадет амплитуда вспышек, а следовательно, и усиление сверхрегенератора, либо устройство выйдет на нелинейный режим. По этой причине линейный режим сверхрегенератора используется редко.

Надо также заметить, что совершенно необязательно коммутировать напряжение питания, чтобы получить вспышки колебаний. С равным успехом можно подавать вспомогательное напряжение суперизации на сетку лампы, базу или затвор транзистора, модулируя их усиление, а значит, и обратную связь. Прямоугольная форма гасящих колебаний также неоптимальна, предпочтительнее синусоидальная, а еще лучше пилообразная с пологим нарастанием и резким спадом. В последнем варианте сверхрегенератор плавно подходит к точке возникновения колебаний, полоса пропускания несколько сужается и появляется усиление за счет регенерации. Возникшие колебания растут сначала медленно, затем все быстрее. Спад же колебаний получается максимально быстрым.

Наибольшее распространение получили сверхрегенераторы с автосуперизацией, или с самогашением, не имеющие отдельного генератора вспомогательных колебаний. Они работают только в нелинейном режиме. Самогашение, иначе говоря, прерывистую генерацию, легко получить в устройстве, выполненном по схеме рис. 1, надо лишь, чтобы постоянная времени цепочки R1C2 была больше времени нарастания колебаний.

Тогда произойдет следующее: возникшие колебания вызовут увеличение тока через транзистор, но колебания будут некоторое время поддерживаться зарядом конденсатора С2. Когда он израсходуется, напряжение на эмиттере упадет, транзистор закроется и колебания прекратятся. Конденсатор С2 начнет относительно медленно заряжаться от источника питания через резистор R1 до тех пор, пока не откроется транзистор и возникнет новая вспышка.

Предыдущая Следующая
колебание, нарастание, амплитуда, транзистор, время, контур, сигнал
Сверхрегенератор
 
Оглавление Ссылки
Карта сайта

 

Сверхрегенеративный амплитуда антенна время входной гармоника генератор дать детектор диапазон использовать каждый каскад катушка колебание коллекторный конденсатор конструирование контур мочь напряжение настройка начинать потеря приемник простой процесс работа радиолюбитель режим сверхрегенеративных сигнал сопротивление станция схема счет такой ток транзистор усиление частота чувствительность энергия этот
Hosted by uCoz